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ON THE COVERING RADIUS OF SOME CODES OVER R = Z2 + uZ2, WHERE u2 = 0 

P. CHELLA PANDIAN & C. DURAIRAJAN 

Department of Mathematics, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India 

 

ABSTRACT  

In this correspondence, we give lower and upper bounds on the covering radius of codes over the ring                        

R = Z2 + uZ2 where u2 = 0 with respect to different distance. We also determine the covering radius of various Repetition 

codes, Simplex codes (Type α and Type β) and their dual and give bounds on the covering radius for MacDonald codes of 

both types over R. 
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1 INTRODUCTION  

In the last decade, there are many researchers doing research on code over finite rings. In particular, codes over 

Z4, Z2 + uZ2 where u2 = 0 received much attention [1, 2, 3, 4, 5, 9, 11, 12, 14, 16, 17]. The covering radius of binary linear 

codes were studied [6, 7]. Recently the covering radius of codes over Z4 has been investigated with respect to Lee and 

Euclidean distances [1, 15]. In 1999, Sole et al gave many upper and lower bounds on the covering radius of a code over Z4 

with different distances. In the recent paper [15], the covering radius of some particular codes over Z4 have been 

investigated. In this correspondence, we consider the ring R = Z2 + uZ2 where u2 = 0. In this paper, we investigate the 

covering radius of the Simplex codes (both types) and their duals, MacDonald codes and repetition codes over R. We also 

generalized some of the known bounds in [1]. A linear code C of length n over R is an additive subgroup of Rn. An element 

of C is called a codeword of C and a generator matrix of C is a matrix whose rows generate C. The Hamming weight wH(x) 

of a vector x in Rn is the number of non-zero components. The Lee weight for a codeword x = (x1, x2,. . . , xn) is defined by 
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The Lee distance between the codewords x and y ∈ Rn is defined as dL (x, y) = wL (x - y). The Euclidean weight 

is given by the relation wE(x) = )(
1
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The Euclidean distance between the codewords x and y ∈  Rn is defined as dE (x, y) = wE (x - y).  

A linear Gray map φ from R →Z 2
2  is defined by φ(x + uy) = (y, x + y), for all x + uy ∈ R. The image φ(C), of a 

linear code C over R of length n by the Gray map, is a binary code of length 2n with same cardinality [16]. The dual code 

C⊥ of C is defined as {x ∈  Rn | x. y = 0 for all y ∈  C} where x.y = i

n

i
i yx∑

= 0
 (mod 2). C is self-orthogonal if               

C ⊆  C⊥ and C is self-dual if C = C⊥. Two codes are said to be equivalent if one can be obtained from the other by 
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permuting the coordinates or changing the signs of certain coordinates or multiplying non-zero element in a fixed column. 

Codes differing by only a permutation of coordinates are called permutation-equivalent. 

Any linear code C over R is equivalent to a code with generator matrix G of the form 
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0
,                                                                                                                            (1.1) 

where A, B and D are matrices over R. Then the code C contain all codewords [v0, v1 ]G, where v0 is a vector of 

length k1 over R and v1 is a vector of length k2 over Z2. Thus C contains a total of 2124 kk  codewords. The parameters of 

C are given [n, 2124 kk
, d] where d represents the minimum distance of C. In[11], we associate to the code C, two binary 

codes. The residue code C1 is defined as C1 = {x ∈  Z 2
n  | ∃ y ∈  Z 2

n  and x + uy ∈  C} and the torsion code                         

C2 = {x ∈  Z 2
n  | ux∈ C}. A vector v is a 2-linear combination of the vectors v1, v2, . . . , vk if v = l1 v1 + . . . + lk vk with           

l i ∈  Z 2 for 1 ≤ i ≤ k. A subset S = { v1, v2, . . . , vk } of C is called a 2-basis for C if for each i = 1, 2, ..., k −1, 2vi is a               

2-linear combination of vi+1, ..., vk , 2vk = 0, C is the 2-linear span of S and S is 2-linearly independent [18]. The number of 

elements in a 2-basis for C is the 2-dimension of C. It is easy to verify that the rows of the matrix  
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form a 2-basis for the code C generated by G given in (1.1). A linear code C over R (over Z2) of length n,            

2-dimension k, minimum distance dH and dL is called an [n, k, dH, dL ] ([n, k, dH ]) or simply an [n, k] code. In this paper, 

we define the covering radius of codes over R with respect to different distances and in particular study the covering radius 

of Simplex codes of type α and β namely, S
α
k  and S

β
k  and their duals, MacDonald codes and repetition codes over R. 

Section 2 contains basic results for the covering radius of codes over R. Section 3 determines the covering radius of 

different types of repetition codes. Section 4 determines the covering radius of Simplex codes and its dual and finally 

section 5 determines the bounds on the covering radius of MacDonald codes.  

2 COVERING RADIUS OF CODES 

Let d be the general distance out of various possible distances (such as Hamming, Lee, and Euclidean).                      

The covering radius of a code C over R with respect to a general distance d is given by }{{ }),(minmax)( ucdCr
CcRu

d n ∈∈
= . 

It is easy to see that rd(C) is the least positive integer rd such that
)(cSR

drCc

n
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= U

 where 

{ }d
n

r rvudRvuS
d

≤∈= ),()(  for any u ∈  Rn. The translate u+C = {u + c | c ∈  C} is called the coset of            

C where u∈  Rn. A vector of minimum weight in a coset is called a coset leader. The following propositions are straight 

forward generalization from [1].  

Proposition 2.1 

The covering radius of C with respect to the general distance d is the largest minimum weight among all cosets.  
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Proposition 2.2 

Let C be a code over R and φ(C) the generalized Gray map image of C. Then rL (C) = rH (φ(C)). 

Now, we give several lower and upper bounds on the covering radius of codes over R with respect to general 

weight. The proof of Proposition 2.3 and Theorem 2.4 being similar to the case of Z4 [1], is omitted.  

Proposition 2.3 (Sphere-Covering Bounds) 

For any code C of length n over R, 
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We consider the two upper bounds on the covering radius of a code over R with respect to general weight.                   

Let C be a code over R and let s(C⊥) = |{ i | Ai (C
 ⊥) ≠ 0, i ≠ 0 }| where Ai (C

⊥) is the number of codewords of various 

possible distances i in C⊥. 

Theorem 2.4 (Delsarte Bound) 

Let C be a code over R, then rd (C) ≤ s(C⊥). 

The following result of Mattson [6] is useful for computing covering radius of codes over rings generalized easily 

from codes over finite fields.  

Proposition 2.5 (Mattson) 

If C0 and C1 are codes over R generated by matrices G0 and G1 respectively and if C is the code generated by 

1

0

0 G
G

G A

 
=  
 

then rd (C) ≤ rd (C0) + rd (C1) and the covering radius of D (concatenation of C0 and C1) satisfy the 

following rd (D) ≥ rd (C0) + rd (C1), for all distances d over R. Since the covering radius of C generated by G = [A|B] is 

greater than or equal to rd (CA) + rd (CB) where CA and CB are codes generated by A and B respectively, this implies rd    

(D) ≥ rd (C0) + rd (C1) because C1 is a subcode of the code generated [G1|A].  

3 COVERING RADIUS OF REPETITION CODES  

A q-ary repetition code C over a finite field Fq = {α0 = 0, α1 = 1, α2, α3, . . . , αq−1 } is an [n, 1, n] code 

{ }qFC ∈= αα , where ),,,( αααα L= . The covering radius of C is 

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 −
q

qn )1(  [13]. Using this, it can be 

seen easily that the covering radius of block (of size n) repetition code [n(q-1),1,n(q-1)] generated by 
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q

qn since it will be equivalent to a repetition code of 

length (q − 1)n. Consider the repetition code over R. There are two types of them of length n viz. unit repetition code                 

Cβ : [n, 2, n, n] generated by Gβ = [11 . . . 1] and zero divisor repetition code Cα : [n, 1, n, 2n] generated by Gα = [uu . . . u]. 

With respect to the Hamming distance the covering radius of Cβ is 







 −
q

qn )1(  but covering radius of Cα is n. 

The following result determines the covering radius with respect Lee distance and Euclidean distance.  
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Theorem 3.1 

rL (Cα) = n, rE (Cα) = 2n, rL (Cβ) = n and rE (Cβ) = 
2

3n .  

Proof. Note that φ(Cα) is a binary repetition code of length 2n hence rL (Cα) = 
2

2n = n. Now by definition               

rE (Cα) = { }),(max αCxd E
Ru n∈

. Let x =
48476
L

48476
L

22

0000

nn

uuuu  ∈  R n, then dE (x, 0) = dE (x, u) = 2n. Thus rE (Cα) ≥ 2n. On the 

other hand if x ∈  Rn has a composition (ω0, ω1, ω2, ω3), where nw
i

i∑
=

=
3

0

  then dE (x, 0 ) = n − ω0 + 3 ω2 and dE(x, u ) 

= n − ω2 + 3 ω0. Thus dE (x, Cα) = min{ n − ω0 + 3 ω2, n − ω2 + 3 ω0} ≤ n+ ω0 + ω2 ≤ n + n = 2n. Hence rE (Cα)= 2n. Similar 

arguments can be used to show that rE(Cβ) ≤ 
2

3n . To show that rE(Cβ) ≥ 
2

3n , let 
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n , then dE (x, 0 ) = n+2t, dE (x, 1) = 4n−10t,                 

dE (x, u ) = n+2t and dE (x, u+1 ) = 6t. Thus rE (Cβ) ≥ min{4n − 10t, n + 2t, 6t} ≥ 
2

3n . The proof of rL (Cβ) = n is simple so 

we omit it.  

In order to determine the covering radius of Simplex and MacDonald codes over R, we need to define few block 

repetition codes over R and find their covering radius. To determine the covering radius of R block (three blocks each of 

size n) repetition code BRep
n3

α  : [3n, 2, 2n, 4n, 6n] generated by [ ]
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the code has constant Lee weight 4n. Thus for x = 11 L 1 ∈  R3n, we have dL (x, BRep
n3

α ) = 3n. Hence by definition,         

rL (BRep
n3

α ) ≥ 3n. On the other hand, its Gray image φ(BRep
n3

α ) is equivalent to binary linear code [6n, 2, 4n] with the 

generator matrix 
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have rL (BRep
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α ) = 3n. With respect Euclidean distance, it is clear that rE (BRep
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α ) ≥
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3
2
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n ++  = 5n.                           

Let x = (u|v|w) ∈  R3n with u, v and w have compositions (r0, r1, r2, r3), (s0, s1, s2, s3) and (t0, t1, t2, t3) respectively such that 

sum of each component composition is n, then dE (x, 0 ) = 3n − r0 + 3 r2 − s0 + 3 s2 − t0 + 3 t3, dE (x, c1) = 3n − r1 + 3 r3 − s2 

+ 3s0 − t3 + 3 t1, dE (x, c2) = 3n− r2 +3 r0 − s0 +3 s2 − t2 +3 t0 and dE (x, c3) = 3n− r3 +3 r1 −s2+3s0 −t1+3t3. Thus                           

dE (x, BRep
n3

α ) ≤ 3n + min{3r2 + 3 s2 + 3 t2 − r0 − s0− t0, 3 r3 + 3 s0 + 3 t1 − r1 − s2 − t3, 3r0 + 3 s2 + 3t0 − r2 − s0 − t2, 3 r1 +           

3 s0 + 3 t3 − r3 − s2 − t1 } ≤ 
2

1
3 +n  {2n + 2 s0 + 2s2 } ≤ 5n. Thus we have the following theorem.  

Theorem 3.2 

rL (BRep
n3

α ) = 3n and rE (BRep
n3

α ) = 5n.  
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One can also define a R block (two blocks each of size n) repetition code Brep
n2

α  : [2n, 2, n, 2n, 4n] generated by 
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Theorem 3.3 

 rL (BRep
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α ) = 2n and rE (BRep
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α ) = 
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7n  

Block code Brep 
n2

α  can be generalized to a block repetition code (two blocks of size m and n respectively) 

BRep
nm+  : [m + n, 2, m, min{2m, m + 2n}, min{4m, m + 4n}] generated by 
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3.3 can be easily generalized using similar arguments to the following.  

Theorem 3.4 

rL (BRep m+n) = m + n and rE (BRep m+n) = 2n + 
2

3m  

4 SIMPLEX CODES OF TYPE α AND β  OVER R 

Quaternary simplex codes of type α and β  have been recently studied in [2]. Type α Simplex code S
α
k  is a linear 

code over R with parameters [22k, 2k, 22k-1, 22k, 3.22k-1] and an inductive generator matrix given by 

1 1 1 1

00 0 11 1 1 1 1
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k k k k

uu u u u u
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G G G G
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α α α α
− − − −

+ + + 
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L L L L
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with G
α
1  =[0 1 u 1+u]. The dual code of S

α
k  is a [22k, 22k+1 - 2k] code. Type simplex code S

β
k  is a punctured 

version of S
α
k  with parameters [2k-1 (2 k - 1), 2k, 22(k-1), 2(k-1) (2 k - 1), 2k (3.2k-2 -1)] and an inductive generator matrix given 

by 
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u
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and for k > 2 
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where G
α

1−k  is the generator matrix of S
α

1−k . For details the reader is refereed to [2]. The dual code of S
β
k  is a 

[2k-1 (2 k - 1), 22k - 2 k -2k] type α code with minimum Lee weight d L = 3.  

Theorem 4.1 

22k ≤ r L (S
α
k ) ≤ 22k+1 and rE (S

α
k ) ≤ 

3

54.5 +k
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Proof. Let x = 11….. 1 ∈ Rn, we have d L (x, S
α
k ) = 22k. By definition, r L (S

α
k ) ≥ 22k. To find the upper bound, 

by equation 4.1, the result of Mattson for finite rings and using Theorem 3.2, we get 

r L (S
α
k ) ≤ r L (S

α
1−k )+ r L (<

876
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)1(22

111
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−
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uuu >) 

               = r L (S
α

1−k )+ 3.22(k-1)  

               = 3.22(k-1) + 3.22(k-2) + 3.22(k-3) +…..+ 3.22.2 + 3.22.1 + r L (S
α
1 ) 

r L (S
α
k ) ≤ 22k+1(since r L (S

α
1 ) = 5). Thus 22k 

≤ r L (S
α
k ) ≤ 22k+1. 

Similar arguments can be used to show rE (S
β
k ) ≤ 5(4(k-1) +4(k-2) +4(k-3) +….+ 41+1) - 

2

11+ r E (S
α
1 ). 

rE (S
α
k ) ≤ 

3

54.5 +k
(since rE (S

α
1 ) = 8). Similar arguments will compute the covering radius of Simplex codes of 

type β . We provide an outline of the proof. 

Theorem 4.2 

r L (S
β
k ) ≤ 2k - 1 (2k - 1) – 1 and rE (S

β
k ) ≤ 

6

82.64.5 −− kk
 

Proof. By equation 4.3, Proposition 2.5 and Theorem 3.4, we get  

r L (S
β
k ) ≤ r L (S

β
1−k )+ r L (< 
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               = r L (S
β

1−k )+ 2(2k - 2) + 2(2k - 3) - 2(k - 2) 

               ≤ (2(2k - 2) + 2(2k - 4) +. . . +24)+(2(2k - 3) + 2(2k -5)+ . . .+ 23) - (2(k - 2) + 2(k - 3) + . . .+2) + r L (S
β
2 )  

Thus r L (S
β
k ) ≤ 2k - 1 (2k - 1) - 1(since r L (S

β
2 ) = 5). Similarly, by using Theorem 3.4, we derive  

r E (S
β
k ) ≤ 

2

3 (4(k - 1) + 4(k - 2) +. . . +42) + (4(k - 1) + 4(k - 2) +. . . +42) -2 (2k - 2 + 2k - 3 + . . . + 2) +rE (S
β
2 )  

r E (S
β
k ) ≤ 

6

82.64.5 −− kk

(since r E (S
β
2 ) = 8). 

Theorem 4.3 

)( ⊥α
kL Sr  = 1, )( ⊥β

kL Sr = 2, )( ⊥α
kE Sr  ≤ 4 and )( ⊥β

kE Sr ≤ 4. 
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Proof. By Delsarte Bound, )( ⊥α
kL Sr  ≤ 1 and )( ⊥β

kL Sr ≤ 2. Thus equality follows in the first case.                  

For second case, note that )( ⊥β
kL Sr ≠1, by sphere covering bound. The result for Euclidean distance follows from 

Delsarte bound. 

5 MACDONALD CODES CODES OF TYPE α AND β  OVER R 

The q-ary MacDonald code )(, qM tk  over the finite field Fq is a unique 









−

−
− −− 11,,

1
tk

tk

qqk
q

qq code in which every nonzero codeword has weight either 
1−kq  or 11 −− − tk qq  [10]. 

In [8], authors have defined the MacDonald codes over R using the generator matrices of simplex codes. For 1 ≤ t ≤ k – 1, 

let )( ,,
βα

tktk GG be the matrix obtained from )( ,,
βα
kk GG by deleting columns corresponding to the columns of 

)( βα
tt GG . i. e, [ ]α

αα

t
ktk G

GG
0

\, =              (5.1) 

and [ ]β
ββ

t
ktk G

GG
0

\, =               (5.2) 

where [A \ B ] denotes the matrix obtained from the matrix A by deleting the columns of the matrix B and 0 in 5.1 

(respectively(5.2)) is a (k - t) x 22t (respectively (k - t) x 2t - 1 (2t - 1)) zero matrix. The code 

])2),122)(22[(:](2,22[: 11
,

22
, kMkM tktk

tk
tk

tk −+−− −−βα generated by the matrix 

)( ,,
βα

tktk GG is the punctured code of )( βα
kk SS and is called a MacDonald code of type α ( β ). Next Theorem 

provides basic bounds on the covering radius of MacDonald codes. 

Theorem 5.1 

)(44)( ,,
αα

trL
rk

tkL MrMr +−≤ for t < r ≤ k, 

)()44(
3

5
)( ,,

αα
trE

rk
tkE MrMr +−≤  for t < r ≤ k. 

Proof. By Theorem 3.2, 

)(2.3)( ,1
)22(

,
αα

tkL
k

tkL MrMr −
− +≤  

                       )(2.3...2.32.3 ,
2)42()22( α

trL
rkk Mr++++≤ −− , k ≥ r > t. 

                       )(44 ,
α

trL
rk Mr+−= . 

Similar arguments holds for )( ,
α

tkE Mr . Similarly using equation 5.2, Proposition 2.5 and Theorem 3.4, 

following bounds can be obtained for type β  MacDonald code. 

Theorem 5.2 

)()21(2)12(2)( ,
)1()1(

,
ββ

trL
rrkk

tkL MrMr +−+−≤ −−  for t < r ≤ k, 
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)(
6

)2.56(2)62.5(2
)( ,,

ββ
trE

rrkk

tkE MrMr +−+−≤  for t< r ≤ k 
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