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ON THE COVERING RADIUS OF SOME CODES OVER R = Z; + uZ,, WHERE u?= 0
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ABSTRACT

In this correspondence, we give lower and uppernbdsuon the covering radius of codes over the ring
R = Z + uz, where G = 0 with respect to different distance. We alseetaine the covering radius of various Repetition
codes, Simplex codes (Typeand TypeB) and their dual and give bounds on the coverinliusafor MacDonald codes of
both types over R.
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1 INTRODUCTION

In the last decade, there are many researcherg desearch on code over finite rings. In particutades over
Z4, Zo+ uZ; where d= 0 received much attention [1, 2, 3, 4, 5, 9,1,,14, 16, 17]. The covering radius of binary éine
codes were studied [6, 7]. Recently the coverirdjusaof codes over s#has been investigated with respect to Lee and
Euclidean distances [1, 15]. In 1999, Sole et akgaany upper and lower bounds on the coveringisaoli a code over,Z
with different distances. In the recent paper [1th covering radius of some particular codes digthave been
investigated. In this correspondence, we considerring R = Z+ uZ, where @ = 0. In this paper, we investigate the
covering radius of the Simplex codes (both types) their duals, MacDonald codes and repetition saer R. We also
generalized some of the known bounds in [1]. Adineode C of length n over R is an additive subgrofuR'. An element

of C is called a codeword of C and a generatorimafrC is a matrix whose rows generate C. The Hamgrweight vy (x)

of a vector x in Ris the number of non-zero components. The Lee wéigha codeword X = (X X,,. . . , %) is defined by
n 0 if X, =0

WL(X):Z WI-(Xi)'WherewL(xi) =31 f X, =1lor 1+ u
=
l 2 if X, = u

The Lee distance between the codewords x ahdl R"is defined as d(x, y) = w, (x - y). The Euclidean weight

n 0 if X, =0
is given by the relation y(x) = Z We (%), whereyw_(x.) =11 if x =lorl+u
i=1
4 if X, =u

The Euclidean distance between the codewords ydddR" is defined as gx, y) = we (X - y).

A linear Gray mapp from R—»Zé is defined byp(x + uy) = (y, x +y), for all x + u¥e R. The imagey(C), of a

linear code C over R of length n by the Gray mam binary code of length 2n with same cardindlig]. The dual code

n

C"” of C is defined as {X.J R"| x. y = 0 for all yLI C} where x.y = Z Xi¥Y; (mod 2). C is self-orthogonal if
i=0

c U c”and C is self-dual if C =€ Two codes are said to be equivalent if one camhtained from the other by
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permuting the coordinates or changing the signsedfin coordinates or multiplying non-zero elemera fixed column.

Codes differing by only a permutation of coordirsadee called permutation-equivalent.
Any linear code C over R is equivalent to a codéh\generator matrix G of the form

o[l A B
= 1.1
0 ul, uD| -4

where A, B and D are matrices over R. Then the é@aentain all codewords {vv; ]G, where ¥y is a vector of
length k over R and yis a vector of lengthjover . Thus C contains a total o4k12k2 codewords. The parameters of
C are given [n,4k12k2, d] where d represents the minimum distance dhf11], we associate to the code C, two binary
codes. The residue code B defined as €= {x [J z, |0y U z} and x + uy[J C} and the torsion code

C,={xU z} | uxld C}. Avector v is a 2-linear combination of the Y@ W, V, . . ., Wif V=1 vi+ . . . + kv, with

i Z,for1<i<k. AsubsetS = {¥ Vs ...,y }of Cis called a 2-basis for C if for each i 72, ..., k -1, 2viis a
2-linear combination of\, ..., \, 2% = 0, C is the 2-linear span of S and S is 2-lilye@adependent [18]. The number of

elements in a 2-basis for C is the 2-dimension.dt G easy to verify that the rows of the matrix

B=|u, UuA uB (1.2)
0 ul,, ub

form a 2-basis for the code C generated by G gime(lL.1). A linear code C over R (ovep)Zof length n,
2-dimension k, minimum distance dnd d is called an [n, k, ¢ d_] ([n, k, dy ]) or simply an [n, k] code. In this paper,

we define the covering radius of codes over R wadpect to different distances and in particuladgthe covering radius

of Simplex codes of type andf namely, SZ and Sf and their duals, MacDonald codes and repetitioresauver R.

Section 2 contains basic results for the coveriajus of codes over R. Section 3 determines theromy radius of
different types of repetition codes. Section 4 daiees the covering radius of Simplex codes andlital and finally

section 5 determines the bounds on the coveringsad MacDonald codes.
2 COVERING RADIUS OF CODES
Let d be the general distance out of various ptssilistances (such as Hamming, Lee, and Euclidean).

The covering radius of a code C over R with respeetgeneral distance d is given By(C) - Egmr{d (C, U) }}

R"=U S, (c)

It is easy to see thaty€) is the least positive integery rsuch that where

Srd (u) = {V [ Rn‘d (u,v) < rd} for any ull R". The translate u+C = {u + c |lc] C} is called the coset of

C where Il R". A vector of minimum weight in a coset is calledaset leader. The following propositions are gtrai

forward generalization from [1].
Proposition 2.1

The covering radius of C with respect to the gdrgistance d is the largest minimum weight amohgadets.
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Proposition 2.2
Let C be a code over R apC) the generalized Gray map image of C. Thé&) = ry (¢(C)).

Now, we give several lower and upper bounds onctheering radius of codes over R with respect toegan

weight. The proof of Proposition 2.3 and Theorelieing similar to the case of /1], is omitted.
Proposition 2.3 (Sphere-Covering Bounds)
For any code C of length n over R,
s-1p ro(C _
22 < d(z)(zs'ln]
C | = L
We consider the two upper bounds on the coveringusaof a code over R with respect to general weigh

Let C be a code over R and let S{G [{i | A (C") #0, i# 0 }| where A (C) is the number of codewords of various

possible distances i in"C
Theorem 2.4 (Delsarte Bound)
Let C be a code over R, they(€) < s(C)).

The following result of Mattson [6] is useful foomputing covering radius of codes over rings gdirem easily

from codes over finite fields.
Proposition 2.5 (Mattson)

If Coand G are codes over R generated by matricgsutl G respectively and if C is the code generated by

01|G
G =(64Hj then g (C) < rq (Co) + 14 (Cp) and the covering radius of D (concatenation gfa@d G) satisfy the
0

following ry (D) > 14 (Cp) + 14 (Cy), for all distances d over R. Since the coveriadius of C generated by G = [A|B] is
greater than or equal tg (C,) + rq (Cg) where G and G are codes generated by A and B respectively,itidies rd
(D) > rg(Co) + r4(C,) because ds a subcode of the code generatedA

3 COVERING RADIUS OF REPETITION CODES
A g-ary repetition code C over a finite field, £ {ao= 0,01 = 1, 05, 03, . . . ,0q-1} iS an [n, 1, n] code
C = {E|0’ 0 Fq}, where@ = (@, d,---,a) . The covering radius of C iF(q‘])—‘ [13]. Using this, it can be
q

seen easily that the covering radius of block (dtesn) repetition code [n(g-1),1,n(g-1)] generatdy

G =

q-1

{H; S S [ [N } is P(q _1)1 since it will be equivalent to a repetition code of
11 10,0, 0,005 Tz O, 0, O T
length (q — 1)n. Consider the repetition code dvefThere are two types of them of length n viz.t wapetition code
Cs . [n, 2, n, n] generated bys& [11 . . . 1] and zero divisor repetition codg: (h, 1, n, 2n] generated by,& [uu . . . u].
With respect to the Hamming distance the coverautjus of Gis {n(q - 1)} but covering radius of {ds n.

q

The following result determines the covering radiith respect Lee distance and Euclidean distance.
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Theorem 3.1

rn(C)=n, &(Cy)=2n, (C)=nandg(Cy) = 3N,
2

Proof. Note thatp(C,) is a binary repetition code of length 2n hencéQ,) = 2N= 1. Now by definition
2

n n

re (Co) =max {d (x,C, )} Let x =Guu - uooo - o LI R" then & (x, 0) = ¢ (x, u) = 2n. Thusg(C,) > 2n. On the
udr"

3
other hand if X_] R"has a compositionusg, o, o, o), wherez W; =N theng (x,0)=n-0+ 3wand ¢(x, u)
i=0

=n-w;+ 3w Thus @ (X, G) =min{n —wy + 3wy, N —®, + 3wg} < N+wy+ w,< N+ n=2n. HencaeC,)= 2n. Similar

arguments can be wused to show thag(Cy) < 31 To show that dCs) = 3N et
2 2

t t t n-3t
— ——

—— — - -
X =000--- A1l---luu---u---1+ul+u---1+u ] R" where t =["J, then @ (x, 0) = n+2t, ¢ (x, 1) = 4n-10t,
4

de (X, u) = n+2tand d(x, 1+u) = 6t. Thus ¢ (Cy) > min{4n — 10t, n + 2t, 6t} 3. The proof of r (Cy) = n is simple so
2

we omit it.

In order to determine the covering radius of Simmad MacDonald codes over R, we need to definebieak

repetition codes over R and find their coveringiuadTo determine the covering radius of R blotkdé blocks each of

n

. . 3n ,_/%,_/L p— -
size n) repetition code BRegp : [3n, 2, 2n, 4n, 6n] generated lo?y:[ 111---duu---u---1+ul+u---1+u ] note that

3
the code has constant Lee weight 4n. Thus for £ =-2 1 [J R®, we have d(x, BRepan) = 3n. Hence by definition,

3 3
r. (BRepan) > 3n. On the other hand, its Gray imagBRepan) is equivalent to binary linear code [6n, 2, 4nfhvwthe

2
n 2n 2n

— | 3
generator matri 1111172100 --- 0 | . Thus the covering radiug tBRepan) < 4N, 20 = 3 Thus, we
11160 ... 0111 2 2
2n

3n 3n
have r (BRep, ) = 3n. With respect Euclidean distance, it is clébat g (BRep, ) 2@+2n+@ = 5n.
2 2

Let x = (ulvjw)[J R*with u, v and w have compositions, (., >, Is), (S, S, S ) and (6, t, &, t) respectively such that
sum of each component composition is n, thekd0) =3n-g+36b-$+3s-tH+ 34k (X, ) =3n-(+3-5
+39-6+34 X6 =3N—-p+t3KHh-$+t3 9 - L +3 hand ¢ (X, &) = 3n— g +3 1, ~5+35 —t;+3t;. Thus

3
de (X, BRepan)S3n+min{3rz+3sz+3tz—ro—s)—to,3r3+3sn+3t1—r1—52—t3,3ro+3§+3b—rz—s)—tz,3r1+

39+t3t-nR-9-4}< 3n+£ {2n + 2 §+ 25} <5n. Thus we have the following theorem.
2
Theorem 3.2

3n 3n
r. (BRep, ) =3nand¢(BRep, ) =5n.
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2
One can also define a R block (two blocks eachzef 8) repetition code Bred:)n . [2n, 2, n, 2n, 4n] generated by

G = {rlﬁ J}_ﬂu} . We have following theorem (its proof is similarthe proof of Theorem 3.2) so we omit it.
Theorem 3.3

2n 2n 7n
r(BRep, )=2nand¢(BRep, )= ~

2
Block code Brepan can be generalized to a block repetition code {ilwaks of size m and n respectively)

+n

BRepm [m+n, 2, m, min{2m, m + 2n}, min{4m, m + 4n}]enerated byG - ] . Theorem

f—’m% —
=1|11--- 1uu --- U

3.3 can be easily generalized using similar argusignthe following.

Theorem 3.4

r (BRep™™) = m + n andg(BRep™") = 2n +3M
2
4 SIMPLEX CODES OF TYPE a AND 5 OVER R

Quaternary simplex codes of typeand 5 have been recently studied in [2]. Typ&implex codésg is a linear

code oveR with parameters [, 2k, 2%, 22 3.2%'] and an inductive generator matrix given by

. _{OO---O| 13- Yuu---u| Fuku- & u} @)

“len e, | G, G,

; a a . Kk o2k+l : B
with G4 =[0 1u 1+u]. The dual code 08y is a [Z¥ 221 - 2K] code. Type simplex cod®, is a punctured

version ofSﬁ with parameters [2 (2% - 1), 2k, 2®D 2D (2% _ 1) ¥ (3.2%-1)] and an inductive generator matrix given

by

o[t 1 1 |0 u “2)
2 1 1 u 1+u |11

and fork > 2 Gkﬁ

~ [11---1 |00 -0 | uu - u] .3)

. el [ el ]

whereGg_l is the generator matrix <s‘k’_1. For details the reader is referaed2]. The dual code @f is a
[2K1 (2% - 1), Z¥- 2% -2K] typea code with minimum Lee weigft, = 3.

Theorem 4.1

a a
<1 (S )<2®+land i (S ,< 54 +5
3
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Proof. Letx = 11.....1 [ R", we haved | (x, Sﬁ ) = 2% By definition,r (Sckr ) > 2% To find the upper bound,

by equation 4.1, the result of Mattson for finitegs and using Theorem 3.2, we get

22(k-1) 22(k-1) 22(k-1)

—
fLSE)<r (Sp)*r (<11---1uu---ul+ul+u---1+u>)

T (S7_, )+ 320D
B2N 4 3 2024 3 264 4322+ 3.7+, (Sf )
a K . a K a K
ro (Sk )< 2+1(sincer | (S; ) =5).Thus Z*<r | (Sy ) < 2%+1.
Similar arguments can be used to sln@(\sf ) < 54D +462 4403 4+ 441y -1y (Sf ).
2

a . a L. . . . .
re (S (< 54 +5 (sincerg (S ) = 8). Similar arguments will compute the coveriaglius of Simplex codes of
3

type 3. We provide an outline of the proof.

Theorem 4.2
fL(SE)<2 N (F-1)-1land g (S < 54" - 62" -8
6

Proof. By equation 4.3, Proposition 2.5 and Theorem 3elget
4(k—1) 2(2k—3)_2(k—2)
—

rL(sf)srL(sf_1)+rL(< 11---1 uu---u »)

T, (Sf_l)+ 2ek-2)y 23 _ofk-2)

< (224 22Ny 42+ O 4 B 2D+ 20 +2) (Sf)
Thusr (Sf )< 281 (2- 1) - 1(since . (Sg ) = 5). Similarly, by using Theorem 3.4, we derive
rE(Sf)s 2(4(k'1’+ AD4 4B+ (@D )22 +2) £ (Sg)

54% - 62 -8

re (Sf )< (sincer ¢ (Sg) = 8).

Theorem 4.3

ro(SZ7) =1,r (SP") =2,r.(S7") <4andr, (SF”) <4
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Proof. By Delsarte Bound,r (S7") < 1 andr_ (SkﬂD) < 2. Thus equality follows in the first case.

For second case, note that (Sk’m) #1, by sphere covering bound. The result for Euelidéistance follows from

Delsarte bound.

5 MACDONALD CODES CODES OF TYPE ¢ AND 8 OVER R

The g-ary MacDonald code M k.t (CI) over the finite field K is a unique
k-1
{ q; - f t k,g "t -q 1-1} code in which every nonzero codeword has weighieeit] or gt -q'* [10].

In [8], authors have defined the MacDonald codesr Bwsing the generator matrices of simplex codes1Fot <k —1,

let G f’,t (G f’t) be the matrix obtained frorg f’, (G f') by deleting columns corresponding to the columns of

G (Gtﬁ)'i'e’Gf,tz[Gf\Ga ] (5.1)
t

0]

andeﬁit :[Gkﬁ\G_ﬂ
t

(5.2)

where A\ B] denotes the matrix obtained from the matiky deleting the columns of the mat&andO in 5.1
(respectively(®)) is a k - f) x 2 (respectively K - ) x 22 =~ ' (2 - 1)) zero matrix. The code
M 7 o[22 = 220 2K [(M F (2%t = 2 )(2% + 20 = 1),2k]) generated by the matrix

G{, (G f‘t) is the punctured code o@g (S/) and is called avacDonald codeof type a (). Next Theorem
provides basic bounds on the covering radius ofeald codes.

Theorem 5.1

(MZ )4 =4"+r (M) fort<r<k

re(M 7)) < 2(4k ~ 47 )+ 1 (M 7)) fort<r<k

Proof.By Theorem 3.2,

(M 7)€ 3.2%7 2 + 1 (M 7))

IN

3.2 2) 4+ 320D 4+ 4+ 32% +r (M ), k>r>t.

=4 -4"+r (M7)).

Similar arguments holds fof_ (m ¢ ) . Similarly using equation 5.2, Proposition 2.5 afideorem 3.4,

following bounds can be obtained for tyggMacDonald code.

Theorem 5.2

rn(Mf)s2¢P @ -n+20V@-2")+r (M/,) fort<r<k,
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k k _ r _ r
re(m gy s 202 2822 0752 ), (g, fortsr<k
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